
History of

Software Testing
Estimation Models

History of Software Testing Estimation Models

3

4

31

32

INDEX
• Introduction

• Software Testing Estimation Models

• Conclusion

• References

Page 3/32

History of Software Testing Estimation Models

Introduction

The technique of estimating the work (expressed in person-hours or dollars)

necessary to build or maintain software based on sparse, ambiguous, and

noisy information is known as effort estimate in software testing. Project

plans, iteration plans, budgets, investment evaluations, pricing proce-

dures, and bidding rounds can all employ effort estimates as input. Know-

ing the workload and financial repercussions of performing a project is the

major goal of software testing estimation encompassing effort and cost.

Software testing cost estimation is a difficult task since there are so many

variables that might influence the project's success. Data from previous

projects with a comparable scope that were carried out and the individu-

als engaged in their implementation serve as the key component for esti-

mating. The implementation of several strategies has been covered in this

work, and an effort has been made to provide fresh concepts in order to

arrive at accurate assessment of characteristics like cost and effort.

Key Words: - Software Cost Estimation, Artificial Intelligence, COCOMO,

Wideband Delphi

Page 4/32

History of Software Testing Estimation Models

Software Testing Estimation Models

Software Cost/Effort Estimation is a critical activity in software develop-

ment projects that enables developers and managers to forecast, predict,

and accurately quote the budget, schedule, and manpower in order to

avoid overruns or underruns and to try to optimize the key factors that

contribute to a project’s success. Since 1950s, estimations of the time and

money needed to build software have changed and are still being stud-

ied today.

For a specific software testing project in a specific environment utilizing

certain methodologies, tools, and techniques, test estimation is the estima-

tion of the testing size, testing effort, testing cost, and testing timeline. The

term "testing size" refers to the total number of tests that must be run.

Sometimes, especially in embedded testing (i.e., testing that is integrated

into the software development process itself) and in circumstances when

it is not required, this may not be calculated. The amount of effort required

for testing is measured in either person days or person hours. Testing costs

are the expenses necessary for testing, including the expense of human

effort. While testing schedule is the duration in calendar days or months

that is necessary for conducting the tests.

Page 5/32

History of Software Testing Estimation Models

The following methods are available now for performing test effort estima-

tion:

 1 Delphi / Wideband Delphi Technique (1950-60)

 2 Analogy-Based Estimation (1970)

 3 Software Size Based/Function Point Estimation (1979)

 4 Constructive Cost Model (COCOMO) (1981)

 5 Test Case Enumeration Based Estimation (1987)

 6 Task (Activity) Based Estimation (1999)

 7 Artificial Intelligence Based Estimation

in calendar days or months that is necessary for conducting the tests.

Page 6/32

History of Software Testing Estimation Models

Delphi
Technique

Anology
Estimation

Software Size
Based
Estimation

Task Based
Estimation

Article
Intellegence
Based

Test Case
Enumeration

1950-60

cocomo

1979 1981 1987 19991970

Methods Available For
Test Effort Estimation

Page 7/32

History of Software Testing Estimation Models

The Delphi Method was created at the RAND Corporation in the

1950s-1960s. The following is one way the Delphi approach may be ap-

plied to software cost computation: Each estimator receives a copy of the

System Definition paper and a form to record a cost estimate from a coor-

dinator.

After reviewing the definition, the estimators do their anonymous calcula-

tions. They can dispute the coordinator, but they don't talk about their

estimations between themselves.

A summary of the estimators' replies, including any odd justifications men-

tioned by the estimators, is prepared and distributed by the coordinator.

Using the findings from the last estimate, estimators anonymously com-

plete a new estimate. Those whose estimations drastically deviate from

the group may be asked to justify their estimates.

The procedure was repeated as many times as necessary. Throughout the

whole procedure, group discussions are not permitted. The method that is

going to be discussed now is a modification of the classic Delphi proce-

dure that improves communication while maintaining anonymity.

 1 Delphi / Wideband Delphi Technique

History of Software Testing Estimation Models

Page 8/32

The coordinator creates a list of the estimations but leaves out any justifi-

cations. In order to focus on topics where the estimates are greatly dispa-

rate, the coordinator schedules a group meeting. Once more, estimators

complete an estimate. Anonymously, the procedure is repeated as many

times as required.

Page 9/32

History of Software Testing Estimation Models

PROBLEMS EXPERT PANEL

QUESTIONARIES

CONSULTATION

ANALYSIS

OUTPUT THROUGH
CONSENSUS OR SATURATION

EFFORTS

ITERATION

Page 10/32

History of Software Testing Estimation Models

Pros of the Delphi approach:
1. Can provide incredibly precise outcomes

2. Uses quite easily

3. Is regarded as a trustworthy procedure despite not being an ISO stan-

dard

4. Can be used for a variety of sectors or issues

Cons of the Delphi method :
1. Need several subject-matter specialists

2. Might get pricey

3. Can take a lot of time

4. If the estimation's scope is excessively broad or poorly specified, it could

not yield excellent results.

Page 11/32

History of Software Testing Estimation Models

Analogy Based/Top-down design was proposed by IBM researchers Harlan

Mills and Niklaus Wirth in the 1970s. Mills created and tested structured

programming techniques in a 1969 attempt to automate the New York

Times morgue index. The success of this project's engineering and man-

agement contributed to the adoption of the analogy-based/top-down

method throughout IBM and the rest of the computer industry.

Analogous estimation is a technique that takes parameter values from

previous data to estimate comparable parameters for a future activity.

Examples of parameters include scope, cost, and duration. Scale exam-

ples include size, weight, and complexity. It is considered a blend of histori-

cal knowledge and expert opinion since the project manager's and

maybe the team's expertise and judgment are used to the estimating

process.

Analogous estimation uses similar prior project data to predict the length

or expense of your present project, hence the term "analogy." When you

have limited knowledge on your present project, you can utilize compara-

ble estimate. Quite often, project managers will be required to provide

cost and duration estimates for a new project because executives want

decision-making data to determine whether the initiative is worthwhile.

Typically, neither the project manager nor anyone else in the business has

ever worked on a project like the new one, yet the executives still want

precise cost and time predictions.

Analogous estimate is the best option in such instances. It is not perfect,

2 Analogy-Based/Top-Down Estimation

Page 12/32

History of Software Testing Estimation Models

but it is accurate since it is based on historical facts. Analogous estimate is

a simple approach to master. When compared to the early predictions,

the project success rate might reach 60%.

Page 13/32

History of Software Testing Estimation Models

OUTPUT THROUGH
CONSENSUS OR SATURATION

EFFORTS

INPUT PROJECT / PROBLEM

SIMILAR FUNCTION

SOLUTION FUNCTION

SEARCHING TECHNIQUE

PROJECT ARCHIVAL

PROJECT
DATASET

Page 14/32

History of Software Testing Estimation Models

The Benefits of Analogous Estimation
1. Analogous estimate is a superior method of estimating in the early

phases of a project when there are few specifics known.

2. The approach is straightforward, and the time required for estimation is

minimal.

3. Because the approach is based on the organization's previous project

data, the success rate may be predicted to be high.

Analogous estimating may also be used to estimate the time and effort

required for particular jobs. As a result, while estimating tasks in Work

Breakdown Structure (WBS), you may use Analogy.

Page 15/32

History of Software Testing Estimation Models

This model was developed by Allan Albrecht at IBM in 1979 for Measuring

Application Development Productivity. Software size would be accessible

by the time a testing project is in its beginning stages. Now, we use this

software size as the scope of the testing project. Then, in order to deter-

mine the needed work to carry out the testing project, we assign a Pro-

ductivity number (rate of accomplishment) for the program size. By assum-

ing that testing software with a size of one Function Point requires two

person hours, we can determine the amount of work needed for the test-

ing project based on the size of the program that has to be tested. If the

program to be tested has a size of 1000 Function Points, then testing the

software will require 2000 Person Hours based on the standard of 2 Person

Hours per Function Point. However, as no standards body has any criteria

for translating software size to effort, the company must establish & main-

tain those using historical data while strictly following a procedure. This

standard must be generated & upheld for all software size measurements

used by the organization.

 3 Software Size Based/Function Point
Estimation (1979)

Page 16/32

History of Software Testing Estimation Models

DISPLAY REPORT MASTER
FILES

CONTROL
FILES

REFERENCES

COLLECT ALL ACCESSIBLE
INFORMATION

ILLUSTRATE THE
FUNCTIONAL POINT

INDENTIFY & CATEGORIES THE
BASE FUNCTIONALITY

DETERMINE THE
FUNCTIONAL SIZE

REPORT THE
OUTCOME

 EFFORTS

Page 17/32

History of Software Testing Estimation Models

Benefits of Estimating Software Size
1. Extremely easy to learn and utilize

2. Quick to calculate the effort estimate - takes very little time.

3. The findings of effort estimation using this method may be remarkably

accurate if the organization determines and maintains these standards

using the correct process.

Demerits of Software Size-Based Estimation
1. Too straightforward and un-auditable

2. Productivity cannot be calculated without testing size. On the other

hand, software size may be used to calculate testing productivity.

3. Despite the fact that the size may be the same, testing requirements

vary by application type. For instance, even if the size of a standalone

software program and a web-based software application may be the

same, they require different amounts of testing. Thus, the average pro-

gram size may not always be appropriate.

4. Organizations must maintain precise records and hire full-time profes-

sionals to create and uphold standards. To effectively calculate these

standards, the timesheets must be customized to collect the right infor-

mation. Data collection must be meticulous.

Page 18/32

History of Software Testing Estimation Models

Barry W. Boehm created the Constructive Cost Methodology (COCOMO),

a model for procedural software cost assessment. Line of Codes (LOC)

was the primary measure used in calculating software development

efforts or costs when Constructive Cost Model (COCOMO) was originally

introduced in 1981 by Barry Boehm in his book Software Engineering Eco-

nomics. This model is frequently referred to as COCOMO 81.

COCOMO II was created in 1995 and eventually published in the book

Software Cost Estimation using COCOMO II in 2000. A bigger database

was used to fine-tune COCOMO II, the successor to COCOMO 81, which is

said to be more suitable for estimating contemporary software develop-

ment projects. COCOMO II also supports more recent software develop-

ment procedures. As software development technology changed from

mainframe and overnight batch processing to desktop development,

code reusability, and the usage of off-the-shelf software components, a

new paradigm was required.

Three shapes that are more and more precise and intricate make up

COCOMO. Because it lacks components to take into account differences

in project parameters, Basic COCOMO's accuracy is only good for short,

early,rough order-of-magnitude estimations of software costs (Cost Driv-

ers). These Cost Drivers are taken into consideration by Intermediate

COCOMO, while Detailed COCOMO also considers the impact of various

4 Constructive Cost Model (COCOMO)

Page 19/32

History of Software Testing Estimation Models

project phases. The last one is the Complete COCOMO model, which

corrects both basic and intermediate inadequacies.estimations of soft-

ware costs (Cost Drivers). These Cost Drivers are taken into consideration

by Intermediate COCOMO, while Detailed COCOMO also considers the

impact of various project phases. The last one is the Complete COCOMO

model, which corrects both basic and intermediate inadequacies.

Page 20/32

History of Software Testing Estimation Models

 EFFORTS

History of Software Testing Estimation Models

Page 21/32

1. When to expect to get Project's anticipated effort estimate

2. Best-Case timeframes for estimating the best-case effort

3. Worst-Case scenarios for estimating the worst-case effort

4. Normal-Case timeframes to gain an estimate of the normal-case effort

• Favorable Features of Test Case Enumeration Based Es-
timation The advantages of this method are as follows:

1. Estimates that are auditable include enough information for a peer to

evaluate them and make sure they are complete and as accurate as

possible.

2. Fairly accurate - correctness is guaranteed because all test cases are

listed and the estimated effort is calculated three times.

3. By marking the test cases as complete, progress tracking is made

easier and the percentage of completion may be calculated.

4. Makes it easier to provide a range of values for the estimations, such as

a. The project can be completed with an expected effort of so many

person hours and a minimum effort of so many person hours. The deci-

sion-makers can now specify the negotiating margins in their quota-

tions.

5 Summaries

Page 22/32

History of Software Testing Estimation Models

• Test Case Enumeration Based Estimation's Demerits

1. There is no testing size, thus productivity cannot be calculated.

2. It takes time to finish the estimation since every test case and its associ-

ated overheads must be included.

Page 23/32

History of Software Testing Estimation Models

 EFFORTS

Page 24/32

History of Software Testing Estimation Models

Proponents of the Balanced Scorecard, Robin Cooper and Robert S.

Kaplan, attracted attention to these principles in a series of essays pub-

lished in Harvard Business Review beginning in 1988. Cooper and Kaplan

defined ABC as a method for addressing the shortcomings of existing cost

management methods. Traditional costing methodologies are frequently

unable to correctly assess the actual costs of manufacturing and related

services. As a result, managers were making choices based on erroneous

data, particularly when many goods were involved. Later, in 1999, Peter F.

Drucker described activity-based costing in the book Management Chal-

lenges of the 21st Century. He claims that whereas activity-based costing

also records the costs of not acting, such as the cost of waiting for a nec-

essary item, traditional cost accounting just records the expenses of doing

something, such as cutting a screw thread. Traditional cost accounting

does not record expenses; activity-based costing does.

If any effort variation occurs, it will be able to measure at a specific activi-

ty level rather than having an impact on all of the activities if activi-

ty-based estimate is used to focus on essential activities. By gathering and

examining the data for 12 Enhancements from Application service Main-

tenance projects that have already been provided, activity-based soft-

ware estimating based on work break down structure has been de-

scribed. This article describes how to achieve at precise estimation at vari

6 Task (Activity) Based Estimation

Page 25/32

History of Software Testing Estimation Models

ous micro-level Software Development Life Cycle activities (SDLC).

The Work Break Down Structure (WBS) results in the division of a big com-

ponent or activity into smaller activities or sub-components. The process of

breaking things down will go on until it becomes impossible to do so physi-

cally or rationally for each lower level of subcomponents. It is necessary to

assess and map each subcomponent and smallest action to a set of

requirements. Since most application service maintenance projects entail

making modest improvements, we can't always use the full promise of the

estimation methodology, such as Function Point Analysis or lines of code

(LOC). In this instance, the majority of the business uses work breakdown

structure and activity-based software estimating.

WBS concentrates on segmenting projects into several activities and allo-

cating resources to each sub activity. The division of tasks into several ac-

tivities is not consistent

throughout applications or projects, and it differs fromone company to

another according to the processes they have established.

By examining the predicted effort data of comparable projects that were

conducted at the micro level of SDLC activities, it is necessary to antici-

pate different possible characteristics to increase the accuracy of WBS.

Page 26/32

History of Software Testing Estimation Models

START
DATE

END
DATE

EXECUTION
PHASE

HOURLY RATE
DOLLAR

EFFORT
ESTIMATED

TYPE OF
ACTIVITY

ACTIVITY 1

DESCRIPTION OF
ACTIVITY 1

Page 27/32

History of Software Testing Estimation Models

The advantages of task-based effort estimation for testing proj-
ects
1. This best reflects how projects are carried out

2. This method provides the most accurate effort estimations by taking

into account all the actions that are done

3. It includes enough information to allow for review, auditing, and

post-mortem analysis when comparing it to the real values

4. It's quick and simple to create an estimate.

5. Makes it simple to track project progress by marking completed tasks

and instantly calculating the percentage of completion

6. Applicable for use in estimating test effort using analogies

The Demerits of task-based effort estimation for testing projects
1. Because testing size is not calculated, testing productivity cannot be

determined.

History of Software Testing Estimation Models

In order to guarantee client satisfaction and repeat business, rapid and

precise project cost estimating is essential. However, it continues to be

one of the most difficult tasks in software engineering, particularly when

dealing with complicated, large-scale, and innovative projects. The old

technique of software cost assessment is being transformed into a flexible

and intelligent approach thanks to breakthroughs in artificial intelligence

technology. An intelligent system to locate and remove duplicates, assess

and pinpoint ambiguity, and process in many formats with little to no

human involvement is a compelling use case for quick and accurate proj-

ect cost estimating.

 7 Artificial Intelligence based Estimation

Page 28/32

Page 29/32

History of Software Testing Estimation Models

PROJECT / PROBLEMS

ESTIMATE THE TIME
FOR COMPLETION

OF TASK

COST ESTIMATED
BY

OLD TECHNIQUE

AI
COST

ESTIMATED

EFFORTS

COMPLEXITY OF
PROBLEM

PHASES REQUIRED

SOFTWARE
REQUIREMENT

Page 30/32

History of Software Testing Estimation Models

Challenges of Today's Project Cost Estimation
1. Failing to take unclear requirements into account

2. The tendency to overestimate production as a result of the assumption

that all resources would perform at full capacity

3. Extensive time and effort wasted in finding and removing duplicate

estimates

4. Adding padding to projections to account for unforeseen expenditures

5. Ignoring significant cost drivers under pressure from stakeholders to

release the statistics quickly

6. Enduring on technical progress and shifting market dynamics

Benefits
1. Quicker project estimating by automation of tedious activities

2. Compared to conventional approaches, there is a 30–40% increase in

precision

3. Accurate numbers supported by past evidence

4. Timely estimate of complex projects with numerous factors and enor-

mous databases

5. Automatic cost-driver detection and evaluation

6. There should be some provision for handling ambiguous needs, such as

missing values and incomplete databases

7. Creation of reusable, trained algorithms for estimations in the future

8. The capacity to provide estimates for documents with a range of

scopes, traits, and formats

Page 31/32

History of Software Testing Estimation Models

Conclusion

It is concluded that all the above-mentioned testing techniques have

some limitations in different cases. Some of them have size related prob-

lems, some fail to calculate productivity, some are costly and time-con-

suming, etc. To address the issue of software test effort estimate, Testbytes

developed a test effort calculator for cost estimates, which is used to de-

termine the amount of time and effort necessary to test your product. The

software test effort calculator from Testbytes is intended for specification

and user preferences. The test cost calculator covers a wide range of

topics, including banking and finance, telecommunications, e-com-

merce, and so on. The cost calculator is platform agnostic, which means

you may use it on web, mobile, or both at the same time. The ultimate

cost is determined by the total number of testing cycles necessary for the

entire procedure.

Page 32/32

History of Software Testing Estimation Models

References

1. Murali Chemuturi “Test Effort Estimation”.

2. Rodríguez Montequín, V.; Villanueva Balsera, J.; Alba González, C.;

Martínez Huerta, G.” Software project cost estimation using AI tech-

niques” Proceedings of the 5th wseas/iasme Int. Conf. on systems

theory and scientific computation, Malta, September 15-17, 2005

(pp289-293)

3. Sheikh Umar Farooq, SMK Quadri “Empirical Evaluation of Software Test-

ing Techniques – Need, Issues and Mitigation” Software Engineering : An

International Journal (SEIJ), Vol. 3, No. 1, April 2013

4. Dheeraj Kapoor, R. K. Gupta “International Journal of Research and

Development in Applied Science and Engineering (IJRDASE) ISSN:

2454-6844”

